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1 Renewal Process

Definition 1.1 (Renewal process)
Let {Xn, n = 1, 2, ...} be a sequence of nonnegative independent random variables with

a common distribution F . Xn is interpreted as the time between the (n − 1)st and nth

event. Let N(t) be the number of events occured before or at time t. The counting process

{N(t), t ≥ 0} is called a renewal process.

Remark
1. Note that a renewal process does not possess stationary increments and independent

increments.

2. renewal process is usually using to model machine’s break down, and holding time repre-

sents the time interval between two breaking down machines.

Corollary 1.1 (Strong law of large numbers for Renewal Process)

µ := E[Xn] =

∫ ∞

0
xdF (x)

By the strong law of large numbers, Sn/n → µ with probability 1 as n → ∞.

Remark Hence it is impossible that Sn ≤ t as n → ∞, so N(t) < ∞ for any finite t with

probability 1.

Corollary 1.2 (Distribution of N(t) for Renewal Process)
Letting S0 = 0, Sn =

∑n
i=1Xi, it follows that Sn is the time of the nth event. Here Fn

denotes the distribution of Sn =
∑n

i=1Xi.

P{N(t) = n} = P{N(t) ≥ n} − P{N(t) ≥ n+ 1}

= P {Sn ≤ t} − P {Sn+1 ≤ t} (N(t) = sup{n : Sn ≤ t})

= Fn(t)− Fn+1(t)



2 The Elementary Renewal Theorem

Definition 1.2 (Renewal function)
m(t) = E[N(t)] is called the renewal function.

m(t) =
∞∑
n=1

Fn(t)

Remark Note that we have m(t) < ∞ for all 0 ≤ t < ∞.

Proof

m(t) = E[N(t)] =
∞∑
n=1

P{N(t) ≥ n} =
∞∑
n=1

P {Sn ≤ t} =
∞∑
n=1

Fn(t) (Theorem ??)

■

Theorem 1.1 (Strong Law of Renewal Process)
With probability 1,

lim
t→∞

N(t)

t
=

1

µ
lim
t→∞

t

N(t)
= µ (1)

Remark 1/µ is called the rate of the renewal process

Proof When N(t) = n, t = Sn, we have
N(t)

t
=

n

Sn
⇔ t

N(t)
=

Sn

n
=

X1 + · · ·+Xn

n
→ µ

When N(t) = n, t ̸= Sn, we have:, Since t− Sn is less than Xn+1.
t

N(t)
=

Sn + (t− Sn)

n
=

Sn

n
+

t− Sn

n
→ µ

Or we can denote SN(t) as the time of the last renewal prior to or at time t, and SN(t)+1 as

the time of the first renewal after time t, then

SN(t) ≤ t ≤ SN(t)+1 ⇒
SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)

By the strong law of large numbers, SN(t)

N(t) =
∑N(t)

i=1 Xi

N(t) → µ as t → ∞.

Similarly, SN(t)+1

N(t) =
SN(t)+1

N(t)+1
N(t)+1
N(t)

By the Squeeze Theorem, we can prove the theorem. ■

Lemma 1.1 (Central Limit Theorem for Renewal Process)
Let µ and σ2, assumed finite, represent the mean and variance of an interarrival time.

Then

P

{
N(t)− t/µ

σ
√
t/µ3

< y

}
→ 1√

2π

∫ y

−∞
e−x2/2dx as t → ∞

Note that this theorem implies that N(t) is asymptotically normally distributed with mean

t/µ and variance tσ2/µ3 as t → ∞.
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2 The Elementary Renewal Theorem

Definition 2.1 (Stopping Time)
Let X1, X2... denote a sequence of independent random variables. An integer-valued

random variable N is said to be a stopping time for the sequence X1, X2, ... if the event

{N = n} is independent of Xn+1, ... for all n = 1, ....

Theorem 2.1 (Wald’s Equation)
If X1, X2, ... are independent and identically distributed random variables having finite

expectations, and if N is a stopping time for X1, X2, ... such that E[N ] < ∞, then

E[

N∑
n=1

Xn] = E[N ]E[X]

Example 2.1Stopping time Let Xn, n = 1, 2... be independent and such that

P{Xn = 0} = P{Xn = 1} =
1

2
, n = 1, 2, ...

If we let N = min{n : X1 + ...+Xn = 10}, then N is a stopping time. Since by follows,

E[N ] = 20.

10 = E[X1 + ...+XN ] =
1

2
E[N ]

Example 2.2Not Stopping time Let Xn, n = 1, 2... be independent and such that

P{Xn = −1} = P{Xn = 1} =
1

2
, n = 1, 2, ...

If we let N = min{n : X1+ ...+Xn = 1}, then N is not a stopping time. Since the follow

equation is a contradiction.

1 = E[X1 + ...+XN ] = 0 · E[N ]

Theorem 2.2 (The Elementary Renewal Theorem)

lim
t→∞

m(t)

t
=

1

µ

Remark This theorem is necessary, because in general, if Zn → z with probability 1, E[Zn]

may not converge to z.

Proof The proof is based on the stopping time and wald’s equation. Note that the event

{N(t) = n} depends on Xn+1, implying that N(t) is not a stopping time. Observe that

N(t) + 1 = n ⇔ N(t) = n− 1

⇔ X1 + · · ·+Xn−1 ≤ t,X1 + · · ·+Xn > t

The event {N(t) + 1 = n} is independent of Xn+1, ..., suggesting that N(t) + 1 is a

stopping time. From Wald’s equation m(t) < ∞, we obtain that

E[X1 + ...+XN(t)+1] = E[X]E[N(t) + 1]
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3 The key Renewal Theorem

That can be rewritten as

E[SN(t)+1] = µ[m(t) + 1]

Note that SN(t) ≤ t < SN(t)+1, and this gives

µ[m(t) + 1] > t ⇔ m(t) + 1 > t/µ ⇔ m(t) > t/µ− 1

This can derive the lower bound:

lim inf
t→∞

m(t)

t
≥ lim inf

t→∞

t/µ− 1

t
=

1

µ

When it comes to the upper bound, if Xi ≤ M , then SN(t)+1 ≤ t + M , and we have

µ(m(t) + 1) ≤ t+M → m(t) ≤ (t+M)/µ− 1

If Xi is unbounded, we can define a new process based on min{Xi,M}. Let m̄(t) be the

renewal function for the new process. We have m̄(t) ≥ m(t), m̄(t) ≤ (t+M)/µM − 1, where

µM = E[min{Xi,M}]. Therefore, m(t) ≤ (t+M)/µM − 1. And the upper bound is:

lim sup
t→∞

m̄(t)

t
≤ lim sup

t→∞

(t+M)/µM − 1

t
=

1

µM

Note that if we let M → ∞, then µM → µ, and the upper bound for m(t)
t is also 1

µ , so we

have

lim
t→∞

m(t)

t
=

1

µ

■

3 The key Renewal Theorem

Definition 3.1 (Lattice random variable and Lattice distribution function)
A nonnegative random variable X is said to be lattice if there exists d ≥ 0 such that∑∞

n=0 P{X = nd} = 1. That is, X is lattice if it only takes on integral multiples of some

nonnegative number d. The largest d is said to be the period of X .

If X is lattice and F is its distribution function, then we say F is lattice.

Theorem 3.1 (Blackwell’s Theorem)
1. If F is not lattice, then

lim
t→∞

m(t+ a)−m(t) = a/µ

for all a ≥ 0.

2. If F is lattice with period d, then

lim
n→∞

E[# of renewals at nd] = d/µ

Proof
1. limt→∞m(t+ a)−m(t) = limt→∞(t+ a)/µ− t/µ = a/µ
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3 The key Renewal Theorem

2. As no renewal occurs in ((n− 1)d, nd)

lim
n→∞

E[ # of renewals at nd] = lim
n→∞

E[N(nd)−N((n− 1)d)]

= lim
n→∞

m(nd)−m((n− 1)d)

= lim
n→∞

nd/µ− (n− 1)d/µ = d/µ

If interarrivals are always positive, in the lattice case

P{ renewal at nd} = E[ # of renewals at nd] → d/µ as n → ∞

■

Definition 3.2 (Direct Riemann Integrability)
Let h be a function defined on [0∞). For any a > 0, let m̄n(a) be the supremum and

mn(a) the infinum of h(t) over the interval (n− 1)a ≤ t ≤ na. We say that h is directly

Riemann integrable if
∑∞

n=1 m̄n(a) and
∑∞

n=1mn(a) are finite for all a > 0 and

lim
a→0

a

∞∑
n=1

m̄n(a) = lim
a→0

a

∞∑
n=1

mn(a)

Theorem 3.2 (Sufficient condition for dRi)
A sufficient condition for h to be dRi is that

1. h(t) ≥ 0∀t ≥ 0

2. h(t) is nonincreasing

3.
∫∞
0 h(t)dt < ∞

Theorem 3.3 (The Key Renewal Theorem)
If F is not lattice, and if h(t) is directly Riemann integrable, then

lim
t→∞

∫ t

0
h(t− x)dm(x) =

1

µ

∫ ∞

0
h(t)dt

Proof Note that when t is large, m(t) ≈ t/µ, and

lim
t→∞

∫ t

0
h(t− x)dm(x) ≈ lim

t→∞

∫ t

0
h(t− x)

1

µ
dx = lim

t→∞

1

µ

∫ t

0
h(x)dx =

1

µ

∫ ∞

0
h(t)dt

■

Theorem 3.4 (Blackwell vs. Key Renewal Theorem)
Blackwell’s theorem and Key renewal theorem are equivalent.

Proof We prove Blackwell’s theorem from the key renewal theorem. Define h(t) for some

a ≥ 0. It is straightforward that h(t) is dRi.

h(t) =

1 if 0 ≤ t ≤ a

0 if t > a
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3 The key Renewal Theorem

For any t ≥ a, we have∫ t

0
h(t− x)dm(x) =

∫ t

t−a
dm(x) = m(t)−m(t− a)

Therefore,

lim
t→∞

[m(t+a)−m(t)] = lim
t→∞

[m(t)−m(t−a)] = lim
t→∞

∫ t

0
h(t−x)dm(x) =

1

µ

∫ ∞

0
h(t)dt =

a

µ

■

Theorem 3.5 (Distribution of SN(t))

P
{
SN(t) ≤ s

}
= F̄ (t) +

∫ s

0
F̄ (t− y)dm(y), t ≥ s ≥ 0

Follow this, we have

P
{
SN(t) = 0

}
= F̄ (t) dFSN(t)

(y) = F̄ (t− y)dm(y), 0 < y ≤ t

Proof

P
{
SN(t) ≤ s

}
=

∞∑
n=0

P {Sn ≤ s,N(t) = n} =

∞∑
n=0

P {Sn ≤ s, Sn+1 > t}

= F̄ (t) +
∞∑
n=1

P {Sn ≤ s, Sn+1 > t}

= F̄ (t) +

∞∑
n=1

∫ ∞

0
P {Sn ≤ s, Sn+1 > t | Sn = y} dFn(y)

= F̄ (t) +
∞∑
n=1

∫ s

0
F̄ (t− y)dFn(y) (P{Sn+1 > t|Sn = y} = F̄ (t− y))

= F̄ (t) +

∫ s

0
F̄ (t− y)d

( ∞∑
n=1

Fn(y)

)

= F̄ (t) +

∫ s

0
F̄ (t− y)dm(y) (Definition 1.2)

The proof for the P
{
SN(t) = 0

}
= F̄ (t) is simple, since SN(t) = 0 means N(t) = 0. As

for the proof of the later, note that

dm(y) ≈ m(y + dy)−m(y) = E[# renewals in (y, y + dy)]

≈ P{ renewal occurs in (y, y + dy)}

The second approximation is obtained because there is at most one renewal in (y, y + dy)

for small dy with a very high probability. So

dFSN(t)
(y) = P

{
SN(t) ∈ (y, y + dy)

}
= P

 renewal occurs in (y, y + dy),

next interarrival > t− y

 (Figure 3)

= dm(y)F̄ (t− y)

y y + dy

SN(t) t SN(t)+1
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4 Alternating Renewal Process

■

4 Alternating Renewal Process

Definition 4.1 (Alternating Renewal Process)
Consider a system that can be in one of two states: on or off. Initially it is on and it

remains on for a time Z1, it then goes off and remains off for a time Y1, it then goes on for

a time Z2, then off for a time Y2; then on, and so forth. Suppose the two sequences {Zn}
and {Yn} are i.i.d, and they may be dependent. In other words, each time the process

goes on everything starts over again, but when it goes off we allow the length of the off

time to depend on the previous time. Let H be the distribution of Zn, G the distribution

of Yn, and F the distribution of Zn + Yn. Furthermore, let

P (t) = P{system is on at time t}

Theorem 4.1 (Lim P(t) in alternating renewal process)
If E[Zn + Yn] < ∞, and F is nonlattice, then

lim
t→∞

P (t) =
E[Zn]

E[Zn] + E[Yn]

Proof Say that a renewal takes place each time the system goes on.

P (t) =E
[
P
{

on at t | SN(t)

}]
=P

{
on at t | SN(t) = 0

}
P
{
SN(t) = 0

}
+

∫ ∞

0
P
{

on at t | SN(t) = y
}
dFSN(t)

(y) since dFSN(t)
(y) : 0 < y ≤ t

=P
{

on at t | SN(t) = 0
}
F̄ (t)

+

∫ t

0
P
{

on at t | SN(t) = y
}
F̄ (t− y)dm(y) Theorem 3.5

Note that SN(t) = 0 ⇔ Z1 + Y1 > t and given that SN(t) = 0, on at t ⇔ Z1 > t:

P
{

on at t | SN(t) = 0
}
= P {Z1 > t | Z1 + Y1 > t} =

H̄(t)

F̄ (t)

Suppose that N(t) = n, we have SN(t) = y ⇔ Zn+1 + Yn+1 > t − y, and given that

SN(t) = y, on at t ⇔ Zn+1 > t− y:

P
{

on at t | SN(t) = y
}
= P{Z > t− y | Z + Y > t− y}

=
H̄(t− y)

F̄ (t− y)

Or we can derive it another way:

P
{

on at t | SN(t) = y
}

=
∑
n

P
{

on at t | SN(t) = y,N(t) = n
}
P{N(t) = n}

Conditioning on SN(t) = y and N(t) = n, on at t ⇔ Zn+1 > t − y. The second part
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4 Alternating Renewal Process

SN(t) = y,N(t) = n ⇔ Sn = y, Sn ≤ t, Sn+1 > t ⇔
∑n

i=1(Zi + Yi) = y, Zn+1 + Yn+1 >

t− y.
P
{

on at t | SN(t) = y,N(t) = n
}

=P

{
Zn+1 > t− y |

n∑
i=1

(Zi + Yi) = y, Zn+1 + Yn+1 > t− y

}
=P {Zn+1 > t− y | Zn+1 + Yn+1 > t− y}

=
H̄(t− y)

F̄ (t− y)

Hence, we have

P
{

on at t | SN(t) = y
}

=
∑
n

P
{

on at t | SN(t) = y,N(t) = n
}
P{N(t) = n}

=
∑
n

H̄(t− y)

F̄ (t− y)
P{N(t) = n}

=
H̄(t− y)

F̄ (t− y)

(∑
n

P{N(t) = n}

)

=
H̄(t− y)

F̄ (t− y)

Return to the calculation of P (t), we have

P (t) =P
{

on at t | SN(t) = 0
}
F̄ (t)

+

∫ t

0
P
{

on at t | SN(t) = y
}
F̄ (t− y)dm(y)

=H̄(t) +

∫ t

0
H̄(t− y)dm(y)

As H̄(t) → 0 as t → ∞, by the key renewal theorem, we have

lim
t→∞

P (t) = lim
t→∞

∫ t

0
H̄(t− y)dm(y) =

1

µF

∫ ∞

0
H̄(t)dt =

E [Zn]

E [Zn] + E [Yn]

Similarly, if we let Q(t) = P{off at t} = 1− P (t), then Q(t) → E[Yn]
E[Zn]+E[Yn]

. In addition,

the fact the system was initially on makes no difference in the limit. ■

Lemma 4.1 (Multiple states for alternating renewal process (Song, 2020, PS. 2))
A process is in one of n states, 1, 2, ..., n. Initially it is in state 1, where it remains for an

amount of time having distribution F1. After leaving state 1 it goes to state 2, where it

remains for a time having distribution F2. When it leaves 2 it goes to state 3, and so on.

From state n it returns to 1 and starts over. Then

lim
t→∞

P{ process is in state i at time t}=
∫∞
0 xdFi(x)∑n

j=1

∫∞
0 xdFj(x)

Proof On the basis of alternating renewal process, we can calculate the prob. of state 1, ..., i.

Then we conduct successive difference backwards. ■
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4 Alternating Renewal Process

Theorem 4.2 (Excess Life and Agev (Song, 2020, PS. 2))
Consider a renewal process and let Y (t) denote the time from t until the next renewal and

let A(t) be the time from t since the last renewal. Y (t) is called the excess or residual life

at t, and A(t) is called the age at t.

Y (t) = SN(t)+1 − t and A(t) = t− SN(t)

If the interarrival distribution is nonlattice and µ < ∞, then

lim
t→∞

P{Y (t) ≤ x} = lim
t→∞

P{A(t) ≤ x} =

∫ x

0
F̄ (y)dy/µ

lim
t→∞

E[A(t)] = lim
t→∞

E[Y (t)] =
E
[
X2

1

]
2E [X1]

lim
t→∞

1

t

∫ t

0
A(s)ds = lim

t→∞

1

t

∫ t

0
Y (s)ds =

E
[
X2

1

]
2E [X1]

Remark
1. A(t) ≥ x ⇔ 0 events in the interval (t− x, t]

2. Y (t) > x ⇔ 0 events in the interval (t, t+ x]

3. P{Y (t) > x} = P{A(t+ x) ≥ x}
Proof To derive P{A(t) ≤ x}, let an on-off cycle correspond to a renewal and say that the

system is "on" at time t if the age at t is less than or equal to x. Note that x is given, and the

length between every renewal is varied, when the length is smaller than x, then the system is

always "on" in this interval, when the length is larger than x, then the system is "on" in the first

x interval and "off" in the remaining interval, just as the figure 1.

Figure 1: Excess Life and Age

Since A(t) ≤ x ↔ on att, and let Yn = min{Xn, x}, from the alternating renewal process,

we have
lim
t→∞

P{A(t) ≤ x} = lim
t→∞

P{ on at t} =
E[min(X,x)]

E[X]

=

∫ ∞

0
P{min(X,x) > y}dy/E[X]

P{min(X,x) > y} = P{X > y, x > y} =

 0 if y ≥ x

P{X > y} = F̄ (y) if y < x

lim
t→∞

P{A(t) ≤ x} =

∫ x

0
F̄ (y)dy/µ

Similarly, we say that the system is "off" at time t if the excess life at t is less then or equal
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4 Alternating Renewal Process

to x and "on" otherwise. Thus the off time in a cycle is min(X,x), and so

lim
t→∞

P{Y (t) ≤ x} = lim
t→∞

P{ off at t} =
E[min(X,x)]

E[X]
=

∫ x

0
F̄ (y)dy/µ

■

Definition 4.2 (Inspection Paradox)
We denote XN(t)+1 = SN(t)+1 − SN(t) = A(t) + Y (t) as the length of renewal interval

that contains the point t, however, XN(t)+1 do not have the same distribution as Xn, as

the figure 2 shows.

Figure 2: XN(t)+1

Remark That is, compared with an ordinary renewal interval, the interval containing the point

t is more likely to have a length greater than x. The explanation is simple, the renewal process

contains many (infinite) renewal intervals, and it is more likely that a larger interval will cover the

point t. Therefore, it is plausible that an interval covering the point t should be "stochastically"

longer than an ordinary interval.

Proof
P
{
XN(t)+1 > x

}
= E

[
P
{
XN(t)+1 > x | SN(t)

}]
For all s ∈ [0, t], consider P

{
XN(t)+1 > x | SN(t) = s

}
. Suppose that N(t) = n, then

SN(t) = s ↔ Xn+1 > t− s, and XN(t)+1 > x ↔ Xn+1 > x, so

P
{
XN(t)+1 > x | SN(t) = s

}
= P{X > x | X > t− s} =

F̄ (max{x, t− s})
F̄ (t− s)

Another computation: Conditioning onSN(t) = s andN(t) = n,XN(t)+1 > x ↔ Xn+1 >

x. SN(t) = s,N(t) = n ↔ Sn = s, Sn ≤ t, Sn+1 > t ↔
∑n

i=1Xi = s,Xn+1 > t− s.

P
{
XN(t)+1 > x | SN(t) = s

}
=
∑
n

P
{
XN(t)+1 > x | SN(t) = s,N(t) = n

}
P{N(t) = n}

P
{
XN(t)+1 > x | SN(t) = s,N(t) = n

}
=P

{
Xn+1 > x |

n∑
i=1

Xi = s,Xn+1 > t− s

}
=P {Xn+1 > x | Xn+1 > t− s}

=
P {Xn+1 > max{x, t− s}}

P {Xn+1 > t− s}

=
F̄ (max{x, t− s})

F̄ (t− s)
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4 Alternating Renewal Process

P
{
XN(t)+1 > x | SN(t) = s

}
=
∑
n

P
{
XN(t)+1 > x | SN(t) = s,N(t) = n

}
P{N(t) = n}

=
∑
n

F̄ (max{x, t− s})
F̄ (t− s)

P{N(t) = n}

=
F̄ (max{x, t− s})

F̄ (t− s)

(∑
n

P{N(t) = n}

)
Independent of n

=
F̄ (max{x, t− s})

F̄ (t− s)

Based on this result, we have

F̄ (max{x, t− s})
F̄ (t− s)

=

 F̄ (t− s)/F̄ (t− s) = 1 ≥ F̄ (x) if x < t− s

F̄ (x)/F̄ (t− s) ≥ F̄ (x) if x ≥ t− s

P
{
XN(t)+1 > x | SN(t) = s

}
=

F̄ (max{x, t− s})
F̄ (t− s)

≥ F̄ (x)

P
{
XN(t)+1 > x | SN(t)

}
≥ F̄ (x)

P
{
XN(t)+1 > x

}
= E

[
P
{
XN(t)+1 > x | SN(t)

}]
≥ F̄ (x)

■

Proof [Another proof based on alternating renewal process] Let an on-off cycle correspond to a

renewal interval, and say that the system is "on" at time t if XN(t)+1 > x, that is, the system is

either totally on during a cycle (if the renewal interval is greater than x) or totally off otherwise.

Thus we have P{XN(t)+1 > x} = P{on at timet}. And by the theorem of alternating renewal

process, we have

lim
t→∞

P
{
XN(t)+1 > x

}
=

E[ on time in cycle ]
µ

=
E[E[ on time in cycle | cycle length ]]

µ

=

∫∞
0 E[ on time in cycle | cycle length = y]dF (y)

µ

=

∫ ∞

x
ydF (y)/µ When cycle<x, off; elif cycle>x, the on time=y

lim
t→∞

P
{
XN(t)+1 ≤ x

}
= 1− lim

t→∞
P
{
XN(t)+1 > x

}
= 1−

∫ ∞

x
ydF (y)/µ

=
1

µ

(∫ ∞

0
ydF (y)−

∫ ∞

x
ydF (y)

)
=

∫ x

0
ydF (y)/µ

As t → ∞, we have P{an interval is of length (y, y + dy) and contains t} ≈ ydF (y)/µ.

Note that this probability is also equivalent to the product of the conditional probability and

the probability of an interval is the length of (y, y + dy) (which is dF (y)), so the conditional

11



5 Delayed Renewal Process

probability P{an interval contains t|it is of length (y, y + dy)} ≈ y/µ. That is, in the limit (as

t → ∞), an interval of length y is y times more likely to cover t than one of length 1. As a result,

an interval covering t should be "stochastically" longer than an ordinary interval. ■

Lemma 4.2 (limt→∞ P{XN(t)+1 ≤ x})

5 Delayed Renewal Process

Definition 5.1 (Delayed Renewal Process)
Let {Xn, n = 1, 2, ...} be a sequence of independent nonnegative random variables with

X1 having distribution G, and Xn having distribution F , n > 1. Let S0 = 0, Sn =∑n
i=1Xi, n ≥ 1, and define

ND(t) = sup{n : Sn ≤ t}

The stochastic process {ND(t), t ≥ 0} is called a general or a delayed renewal process.

6 Renewal Reward Process

Definition 6.1 (Renewal Reward Process)
Consider a renewal process {N(t), t ≥ 0} having interarrival times Xn, n ≥ 1 with

distribution F , and suppose that at the time of the nth renewal we receive a reward Rn.

Assume that the pairs (Xn, Rn), n ≥ 1, are independent and identically distributed. Note

that Rn are i.i.d, and Rn may depend on Xn. Let

R(t) =

N(t)∑
n=1

Rn

which represents the total reward earned by time t. Let

E[R] = E[Rn] E[X] = E[Xn]

Theorem 6.1 (Theorem for Renewal Reward Process)
If E[R] < ∞, E[X] < ∞, then

with probability 1, R(t)
t → E[R]

E[X] as t → ∞
E[R(t)]

t → E[R]
E[X] as t → ∞

Remark If we say that a cycle is completed every time a renewal occurs, then the theorem

states that the expected long-run average return is just the expected return earned during a cycle,

divided by the expected time of a cycle. The first point is a generalization of the strong law for

renewal processes, and the second point is a generalization of the elementary renewal theorem.

This theorem remains true if the reward is earned gradually during the renewal cycle. If we

assume that the reward accumulates at a random rate r(t) for any t ≥ 0, then the total reward

12
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earned by time t is represented by R(t) =
∫ t
s=0 r(s)ds. And the theorem holds if we let R denote

the reward earned in a cycle, i.e., R =
∫ X1

s=0 r(s)ds.

Proof
R(t)

t
=

∑N(t)
n=1 Rn

t
=

(∑N(t)
n=1 Rn

N(t)

)(
N(t)

t

)
Note that the first part converges to E[R] as t → ∞ by the strong law of large numbers, and

the later converges to 1
E[X] as t → ∞ by the strong law for renewal processes. ■

Theorem 6.2 (The Elementary Renewal Theorem for Renewal Reward Process (Song, 2020, PS. 2))
Assume that F is not lattice, P {R1 ≥ 0} = 1 and E [X1R1] < ∞.

lim
t→∞

E[R(t)]

t
→ E [R1]

E [X1]

Proof Firstly we haveE[R(t)] = (m(t)+1)E [R1]−E
[
RN(t)+1

]
by a stopping timeN(t)+1.

By assumption, we have limt→∞E
[
RN(t)+1

]
= E[X1R1]

E[X1]
. Combine them we can prove it.

E
[
RN(t)+1

]
= E

[
RN(t)+1 | SN(t) = 0

]
F̄ (t) +

∫ t

0
E
[
RN(t)+1 | SN(t) = s

]
F̄ (t− s)dm(s)

= E [R1 | X1 > t] F̄ (t) +

∫ t

0
E [R1 | X1 > t− s] F̄ (t− s)dm(s)

■

Theorem 6.3 (Blackwell’s Theorem for Renewal Reward Process (Song, 2020, PS. 2))
Assume that F is not lattice, P {R1 ≥ 0} = 1 and E [X1R1] < ∞.

lim
t→∞

E[R(t+ a)−R(t)] → a
E [R1]

E [X1]

Proof Based on the former proof. ■

Example 6.1Car’s Life Car’s life is a random variable with distribution F . An individual has

a policy of trading in his car either when it fails or reaches the age of A. Let R(A) denote the

resale value of an A-year-old car. There is no resale value of a failed car. Let C1 denote the cost

of a new car and suppose that an additional cost C2 is incurred whenever the car fails.

1. Say that a cycle begins each time a new car is purchased. The long-run average cost per

unit time is C1+C2F (A)−R(A)F̄ (A)∫A
0 xdF (x)+AF̄ (A)

.

2. Say that a cycle begins each time a car in use fails. The long-run average cost per unit time

is C1+C2F (A)−R(A)F̄ (A)∫A
0 xdF (x)+AF̄ (A)

.

Solution The first case: simple, easy to see the expected length of a cycle is

E[min{X,A}] =
∫ A

0
xdF (x) +AF̄ (A)

The expected cost of a cycle is

(C1 + C2)P (X ≤ A) + (C1 −R(A))P (X > A) = C1 + C2F (A)−R(A)F̄ (A)

The second case: note that there may be some cars (N ) not fail in the cycle, and the number

13



6 Renewal Reward Process

follows G(F (A)). However, it is easier to see that N is a stopping time.

E[ cost of a cycle ] = E[N ]E[ cost to use a car ] = E[N ]
(
C1 + C2F (A)−R(A)F̄ (A)

)
E[ time of a cycle ] = E[N ]E[ time to use a car ] = E[N ]

(∫ A

0
xdF (x) +AF̄ (A)

)
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